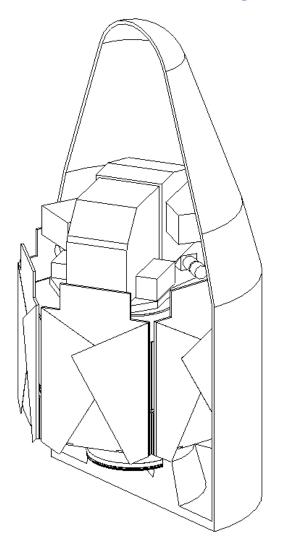


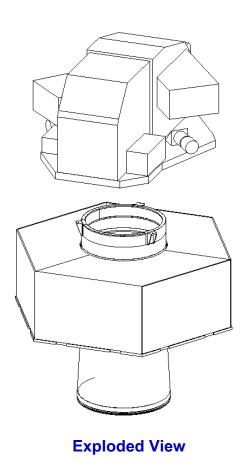
Spacecraft Bus to Instrument Interfaces

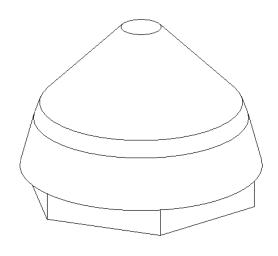
Mechanical/Thermal Interface

Ron Mader
Lead Mechanical Design Engineer
NRL
202-404-3470
rmader@space.nrl.navy.mil

Top Level Requirements


- Requirements
 - Mechanical Interface
 - Volume Interface
 - Mechanical Environmental Loads
 - 20+-2 Degree Celsius Conduction and TBD Radiation Thermal Interface
 - Stability of TBD Degree Celsius per Minute Thermal Interface
 - Location Plus Mechanical and Thermal Interfaces for Omni Antenna
 - Location Plus Mechanical and Thermal Interfaces for Star Trackers
 - Align Instrument to Bus at System Integration
 - Instrument Mass Allowable
 - Low Jitter Platform of TBD
 - Environmental Loads: Manufacturing, Transportation, Testing, Launch, and On-Orbit
 - Location for Spin Balance Masses for System Testing or Spin Balance Instrument Prior to System Integration




Current Baseline/Approach

Current Baseline Design (Two Hinge Design)

Control Volume

Trade Studies

- Three Point Mechanical Interface Trade
- Volume Interface Trade
- 9.5 ft or 10.0 ft Fairing Trade
- Omni Antenna Location Trade
- Star Tracker Location Trade
- CCD Radiator Location Trade
- Spin Balance Trade

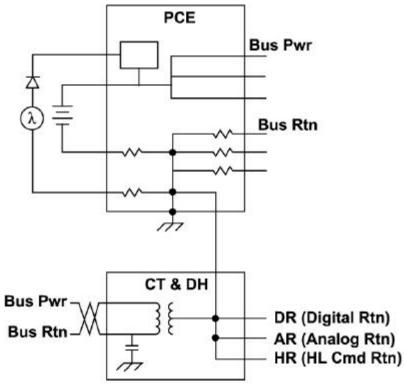
Issues

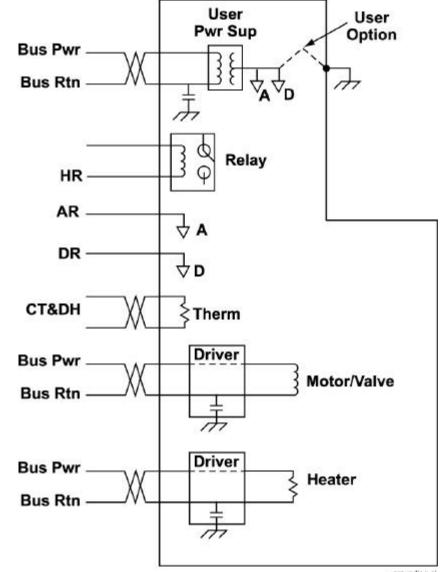
- Instrument Mass
- Instrument Volume

Top Level Schedule

	FY00	FY01	FY02	FY03	FY04	FY05
	Q1 Q2 Q3 Q4					
Design Trades	9/00	5/0	1			
SRR		△11/00				
PDR		△5/0	1			
Instrument/Bus ICD	9/00	5/0	1			
CDR			△2/02			
Instrument I&T			7/02	7	/03	
Verify Requirements			9/02		10/03	
Delivery Instrument				△7	/03	
System I&T				9/03	2/	04

Mech Schedial


Spacecraft to Instrument Electrical Interfaces


J. Christopher Garner
Electrical Subsystems Lead
NRL Code 8134
202-767-9075
garner@ssdd.nrl.navy.mil

FAME I/F Grounding

- 1. Bus Return Connected to Structure at PCE Only
- 2. AR, DR, HR Connected to Structure via CTDH
- 3. HR Never Connected to Structure at User
- 4. AR, DR Optionally Connected to Structure at User

Spacecraft to Instrument Power I/F

Primary Power 2 Each (TBD)

Voltage
 Spacecraft Bus Power at 30+TBD,-6VDC, Returns to Spacecraft

Single Point Ground

Power
 TBD (Amps) per Feed

Switching
 Provided by Spacecraft Power Control Distribution Electronic

(PCDE)

Fault Protection
 TBD Provided by Spacecraft PCDE

Inrush Current Limit
 Limited to Twice the Average Input Operating Current and Shall

to Within 10% of Nominal Operating Values Within 200 Milliseconds

After the Application of Power

Secondary Power None

Settle

Isolation
 Primary Input Power and Returns Shall Be Isolated From the Case

(Chassis) and Secondary Power Circuitry by a Minimum DC

Resistance of 1 Megohm

Bonding/Grounding Shall Be in Accordance With MIL-B-5087

Structure Grounding Instrument Structure Shall Be Electrically Grounded to the

Spacecraft Bus With Ground Straps Provided by NRL

Bonding
 DC Impedance Shall Be <= 2.5 m? for Metal to Metal Surface,

<= 10? for Metal to Composite Interfaces

• EMI/EMC MIL-STD-461 CS01, CS-02, CS-06, CE-01 and CE-03, RS (TBD per

Range Requirements)

Instrument Power @ 28V

Component	Operational	Transfer Orbit	Survival
Focal Plane Assembly	6	0	0
Analog Processing Electronics	s 15	0	0
CCD Control Electronics	26	0	0
Data Processing & Instrument Control*	50	0	0
Focal Plane Heaters	2	0	0
Instrument Heater	80	0	0
Survival Heaters	0	20	60
Total Power	179	20	60
Contingency	90	10	30
Design Limit	269	30	90

Spacecraft to Instrument Command & Telemetry Interface

- 1553 I/F for Command and Most Housekeeping Data
- 2 Redundant Busses Controlled by the S/C
- Command I/F
 - Time Updates
 - Star Tracker Attitude
 - Active Heater Temperature Setpoints
 - Star Catalog Updates
 - Flight Software Patches
 - Special Test Modes
- Housekeeping Data Interface
 - Temperatures
 - Voltage/Current Monitors
 - Command Status Information
 - Attitude and Spin Rate
 - Rate
 - 1 per Second

Spacecraft to Instrument Analog Telemetry Interface

- Temperature Measurements (6 TBR)
- Voltage Monitors (4 Per Side / 8 Total TBR)

Spacecraft to Instrument Mission Data Interface

- Science Data Sent on High Speed (TBD) Link
- HSS Operates at Rates From 0.5 to 20 Megabits/sec
- Expected Data Rates
 - Outside Galactic Plane
 - 817 Stars/sec = 263 Kilobits/sec
 - In Galactic Plane
 - Number of Stars in Star Catalog Filtered to Keep Rate <= 400 Kilobits/sec